Kinetics and Activation Parameters

- In order to probe reaction mechanisms, one must understand the activation parameters: ΔG^{\ddagger} , ΔH^{\ddagger} , ΔS^{\ddagger} and ΔV^{\ddagger}
- $\ln (k/t) = -\Delta H^{\ddagger}/RT + \ln (k'/h) + \Delta S^{\ddagger}/R$
- The activation parameters ΔH^{\ddagger} and ΔS^{\ddagger} can
- The activation parameters ΔH^{\ddagger} and ΔS^{\ddagger} can be obtained by measuring the rate of a reaction at different temperatures. A plot of ln (k/T) vs. 1/T (an Eyring plot) will give a straight line with a slope of $-\Delta H^{\ddagger}R$ and an intercept of ln(k'/h) + $\Delta S^{\ddagger}R$. Once ΔH^{\ddagger} and ΔS^{\ddagger} have been determined, ΔG^{\ddagger} can be calculated according to $\Delta G^{\ddagger} = \Delta H^{\ddagger} - T\Delta S^{\ddagger}$.

- k = rate constant
- T = temperature (K)
- ΔH[‡] = enthalpy of activation (J mol⁻¹)
- $R = molar gas constant (8.3145 J K^{-1} mol^{-1})$
- k' = Boltzmann constant (1.38 x 10⁻²³ J K⁻¹)
- h = Plank constant (6.626 x 10⁻³⁴ J s)
- ΔS^{\ddagger} = entropy of activation (J K⁻¹ mol⁻¹)

Kinetics and Activation Parameters

- Values of ∆S[‡] are particularly useful to distinguish between associative (A) and dissociative (D) substitution mechanisms:
 - Large –ve ΔS^{\ddagger} (–10 to –15 e.u.) \rightarrow A or I_a mechanism

```
(1 \text{ e.u.} = 1 \text{ cal } \text{K}^{-1} \text{ mol}^{-1} = 4.184 \text{ J } \text{K}^{-1} \text{ mol}^{-1})
```

- Large +ve ΔS^{\ddagger} (+10 to +15 e.u.) \rightarrow D or I_d mechanism
- The volume of activation (ΔV[‡]) can also be useful. A reaction in which the transition state has a greater volume than the initial reactants (including changes in the volume of the solvent, which is particularly important if solvated ions are involved) will have a large +ve ΔV[‡]. ΔV[‡] can be determined from the pressure dependence of a reaction:
 - Large –ve ΔV^{\ddagger} (-5 to -15 cm³ mol⁻¹) \rightarrow A or I_a mechanism
 - Large +ve DV[‡] (+5 to +15 cm³ mol⁻¹) \rightarrow D or I_d mechanism

 $\ln (k_{P1}/k_{P2}) = -\Delta V^{\dagger}/RT (P_1-P_2)$